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Abstract. A model for the motion of a single ferromagnetic domain is studied numerically and analytically.
A single strip in two dimensions and pinned at two inhomogeneities is considered. We suppose two stable
configurations (positively or negatively curved with pinned ends) due to the action of a bistable potential.
Further, it is assumed that the domain is driven externally by periodic and noisy magnetic fields. The
noise makes the domain able to flip between the two configurations. The small temporally periodic fields
synchronize these flippings and the phenomenon of stochastic resonance is observed. The signal to noise
ratio of the output is investigated and shows a maximum for a nonvanishing intensity of the applied noise.
Its dependency on the stiffness of the domain is studied.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
85.70.Kh Magnetic thin film devices: magnetic heads (magnetoresistive, inductive, etc.);
domain- motion devices, etc.

1 Introduction

In the last two decades, it has been demonstrated that
external noise can play a “positive”, constructive role in
nonequilibrium situations through its interaction with the
nonlinearity of a system [1,2]. A quite spectacular exam-
ple is the case of stochastic resonance (SR) [3,4], in which
the signal-to-noise ratio (SNR) of the output of a dynam-
ical system reaches a maximum for a given nonvanishing
value of the intensity of the applied noise. This, from the
intuitive point of view, surprising phenomenon has been
observed experimentally in a great variety of physical (thin
magnetic films [5], lasers [6], and so on), chemical and bi-
ological (sensory neurons [7,8]) systems. Common to all
these examples is that the systems possess a time scale
which might be controlled by the applied noise.

Until the present time most research on SR has
been focused on zero-dimensional systems. Specifically in
magnetic materials, SR in uniaxial ferromagnetic single-
domain particles and thin epitaxial iron garnet films
driven by noisy and periodic external magnetic fields at
the uniform magnetization reversal has been observed [9].
SNR measurements of such systems have been performed
and a maximum of SNR has been found.

Considerable recent attention has been concentrated
on SR in spatially-distributed systems which are of great
interest for practical application of SR in physics and
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biology. A group of recent studies refers to SR in cou-
pled stochastic elements. The phenomenon of array en-
hanced SR has been found for both linearly and nonlin-
early coupled bistable elements [10,11]. SR for one and
two-dimensional Ising models with Glauber dynamics in
the oscillating magnetic field has been recently studied
[12–14]. The optimal bath temperature and coupling con-
stant where a SNR maximizes have been found. Spatio-
temporal SR has been observed in excitable media [15]
and based on a Swift-Hohenberg dynamics [16,17]. SR of
a domain wall (DW) motion in a one-dimensional nonuni-
form magnetic media has been studied [18]. This phe-
nomenon can be observed in magnetic nanostructures
with a long extension in only one dimension, named
nanowires [19,20].

There is a good experimental possibility of registering
the stochastic motion of a DW in the magnetic nanos-
tructures by spin-polarized scanning electron microscopy
with high spatial resolution [21], already used successfully
for investigation of the spin configuration of such struc-
tures [22]. The experimental investigation of DW dynam-
ics in a thin epitaxial ferrite-garnet film has been car-
ried out in [5]. The stochastic motion (Barkhausen jumps)
of a DW segment between two nearest pinning centers
subjected to some periodic and inhomogeneous magnetic
fields and noise has been studied, and measurements of
SNR have been performed. SNR of the output has shown
a clear maximum by increasing the applied noise strength.

In the present work the motion of a single strip do-
main driven by external deterministic and noisy mag-
netic fields in an inhomogeneous thin magnetic film is
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studied. A single strip domain is an important compo-
nent of magneto-optic recording devices [23]. Nowadays,
behaviour of a single domain subjected to deterministic
uniform and nonuniform magnetic fields has been investi-
gated intensively [24–27]. A single strip domain is a region
of a film limited by parallel domain walls and magnetized
against the remainder of the film and the bias field. Such
domains can be produced by either the system of orthog-
onal conductors with current on the surface of epitaxial
ferrite-garnet film or a pair of centered electromagnets
placed on the two sides of the film [27]. A single domain
with free ends is unstable with respect to tightening into
a bubble. But, the ends of a domain are able to be fixed
in static pinning centers, as, e.g., given by impurities and
other defects of a film or the points of the domain in-
tersection with the coil contour [24–27]. Thereby, in the
case of two pinned ends the strip domain between them is
straight in the presence of an uniform bias field.

We intend to consider stochastic resonance within the
motion of a single domain placed in a double-well shaped
potential and restricted by two pinning points (Fig. 1).
When the noise and the signal are absent the single do-
main in the bistable potential will be curved and its pro-
file will have one of two equilibrium configurations which
minimizes the total energy of the system.

The domain is driven by external noise and a weak pe-
riodic external field. For example, an electromagnet coil
excited by a signal produced by a noise generator can be
of use as a source of noisy magnetic field [5]. Both forces
are considered as global actions (time dependent) and do
not depend on the position of the domain. “Weak peri-
odic fields” means that the external signal never has a
sufficiently large amplitude that the system escapes to the
second stable configuration without noise. Otherwise, with
the addition of noise the single domain will surmount the
barrier between the two equilibrium configurations and
switch to the opposite symmetric configuration. Follow-
ing the predictions of SR we expect that the action of the
weak periodic forces on the hopping dynamics of the do-
main will become most coherent to the periodic driving at
an optimal noise level.

2 Ferromagnetic domain motion

Let us consider a single strip domain pinned at the points
x = 0, y = 0 and x = l, y = 0. The length l is assumed
to be large compared with the width w of the front but
small with respect to the curvature radius. For this case
one can ignore changes of w and of the energy due to de-
formations of the domain profile besides some geometrical
factor. Then, the Lagrangian equation of motion describ-
ing the evolution of the strip domain profile y(x, t) can be
derived from the Lagrangian function density

L{y(x, t)} = T − U. (1)

Here

T = Md0wρ

(
∂y

∂t

)2
√

1 +
(
∂y

∂x

)2

, (2)

stands for the kinetic energy density, U = Ez + Em +
Es is the potential energy density, where M represents
the spontaneous magnetization, d0 is the thickness of the
thin film, and ρ = m/(2Md0), m is the effective mass per
unit area of a domain wall. The contributions to U are
the Zeeman (Ez), magnetostatic (Em), and domain wall
surface (Es) energy densities. The Zeeman contribution is

Ez = 2Md0w(Hb −H(y, t))

√
1 +

(
∂y

∂x

)2

, (3)

whereHb is the temporally constant and spatially uniform
biasing field, H(y, t) stands for spatially inhomogeneous,
time dependent periodic and noisy magnetic fields.

The second summand of the potential energy density
is given by

Em = 2Md0wHm

√
1 +

(
∂y

∂x

)2

(4)

where Hm is the magnetostatic field.
The expression for the magnetostatic energy density

of the infinite straight domain Em [24] is used as Em(w)
in the case l � w. Finally, the domain wall surface energy
density contribution is

Es = 2wσ

√
1 +

(
∂y

∂x

)2

, (5)

where σ is the DW surface energy density. The physics of
this term arises from the exchange interaction. In terms

(2-5) a geometry factor

√
1 +

(
∂y
∂x

)2

appears in order to

replace the energy density for the bow element by the
energy density for dx.

Collecting all temporally constant and spatially uni-
form fields leads to a common parameter

H0 = Hb +
σ

Md0
+Hm, (6)

which is a measure for the stiffness of the domain and can
be seen as a kind of coupling parameter [23,28]. Later on
it will be one of the central values of the analysis.

Now the Lagrange density (1) can be written as

L

(
y,
∂y

∂t
,
∂y

∂x

)
=

2Md0w

[
1
2
ρ

(
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)2

−H0 +H(y, t)

]√
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)2

· (7)

Since it depends on three variables the Lagrangian equa-
tion of motion has to be used in the form

d
dt

∂L

∂(∂y/∂t)
− ∂L

∂y
+

∂

∂x

∂L

∂(∂y/∂x)
= − ∂Q

∂(∂y/∂t)
(8)
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with

Q
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∂t
,
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)
= 2Md0wρλ

(
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)2
√

1 +
(
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)2

, (9)

representing a dissipative function with λ = αM/(mγ∆)
as the viscous attenuation, α as the Gilbert relaxation con-
stant, ∆ as the domain wall width, γ as the gyromagnetic
ratio.

In the following the overdamped dynamics only will be
considered. Therefore all terms which have their origin in
the kinetic energy density will be neglected. For experi-
mental ferrite-garnet films, the effects associated with the
kinetic energy are negligibly small for the sinusoidal driv-
ing fields at low-frequency Ω � 70 MHz [23]. In this case
the driving field frequency is well below the resonance fre-
quencies of the domain walls. It is worth noting that the
range of low-frequencies is the most interesting for SR ob-
servation.

Then, inserting (9) and (7) into the equation of mo-
tion (8) leads to the overdamped dynamics

2ρλ
∂y

∂t
− ∂H(y, t)

∂y
+

[H(y, t)−H0] ∂
2y
∂x2

1 +
(
∂y
∂x

)2 = 0. (10)

We assume that H(y, t) is the sum of two external fields,
one bistable temporally constant contribution H1(y), and
H2(y, t) standing for the temporally periodic and noisy
excitations. We will analyze two possibilities of a bistable
inhomogeneity, in detail the two cases

H
(1)
1 (y) = −a

2
y2 +

b

4
y4, orH(2)

1 (y) = −ã(b̃|y| − y2/2)

(11)

will be studied and, later on, we call them first and sec-
ond potentials, respectively. The first potential is a sum
of parabolic and quartic ones. The second potential corre-
sponds to the combination of gradient and parabolic po-
tentials and has discontinuities in the derivative at y = 0.
Possibly, bistable potentials of such a type can be set up
by a spatially nonuniform magnetic field of a system of
permanent magnets [29] or an effective field of magnetic
microdefects created by the method of synchrotron X-ray
lithography [30] or by the laser annealing method [31].

The gradient magnetic field

H2(y, t) = y[A0 cos (Ωst+ φ) +
√

2Dξ(t)] (12)

consists of a periodic signal field with frequency Ωs, am-
plitude A0 and initial phase φ. Later on we will refer to
the force generated by that part as signal. The value of
φ must be treated as a random variable, uniformly dis-
tributed over the interval [0, 2π] [34]. To make the anal-
ysis (theory, experiment and numerics) stationary results
should be averaged over this initial phase.

The second contribution originates a noisy force and
we assume Gaussian white noise with mean value 0 and
autocorrelation function

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t + τ)〉 = δ(τ). (13)

D scales the intensity of this noise. The noise will be of
“global” type, i.e. it depends like the signal on time only
and will have the same value for all y(x). As it can be seen
below the noise occurs to be additive and multiplicative.

The equation (10) is taken as the basis for a numeric
investigation in Section 4 and for a qualitative theory
developed in Section 5. Both approaches will evidence
stochastic resonance for the motion of the strip and agree
qualitatively.

3 The stationary case without temporal
forces

An important restriction will be made for the motion of
the domain. We assume the domain to be pinned at two
points, hence, the following boundary conditions should
be obeyed

y(x = 0) = y(x = l) = 0. (14)

Then, if H2(y, t) = 0, equation (10) possesses the station-
ary (time independent) solutions

y(x) = ±B sn
(
x

x0
, k

)
, (15)

and

y(x) = ± b
[

1−
cosh ( 1

l0
( l2 − x))

cosh ( l
2l0

)

]
(16)

for the first and second potential, respectively. Here

x−1
0 =

√
a+ d

2H0
, B =

√
a− d
b

k =

√
a− d
a+ d

, l0 =

√
H0

a
, (17)

and sn is the elliptic sine, d is a integration constant. Using
the condition ∂y(x)/∂x = 0 for x = l/2N, N = 1, 2, ...,
we can get the equation for the integration constant d for
the first potential in the form

l

2Nx0
= K(k), (18)

where K(k) is the complete elliptic integral.
The curve y(x) can have more then one extremum be-

tween x = 0 and x = l. Extrema will be at x = nl
2N (n =

1, ..., N) because of the symmetry of the system. It is ev-
ident that the domain configuration with N = 1 has the
minimal energy. Since the curvature of the potential H(2)

1
at y = 0 has a discontinuity in its derivative the curve
y(x) has only solutions with one extremum in the case of
the second potential.

It follows from (15) and (16) that the domain con-
figuration depends on the stiffness parameters x0/l or
l0/l for the first and the second potentials, respectively.
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The larger H0 and smaller l and a, the less dangled the
domain will become. Approximate expressions of the pro-
posed solutions for stiff and flexible domains can be found
in the Appendix A.

Stationary (time independent) configurations of single
domains in uniform and inhomogeneous magnetic fields
have been studied experimentally in epitaxial garnet-fer-
rites [24–27]. For the film doped by Bi the parameters are:
4πM = 160 G = 1.6 × 105 A/m, σ/(4πM2d0) =
0.06, d0 = 8.4 × 10−6 m, w = 4 × 10−6 m, H0 =
4.4×103 A/m, α = 0.05 − 0.5, γ = 0.22×106 m/sA, ∆ =
1.0 × 10−6 m, ρλ ≈ 3 × 104 . . . 3 × 105 sA/m3 ; in inho-
mogeneous magnetic fields with

√
a/b = 2× 10−6 m (b =

2×10−6 m and a = 3.2×1013 A/m3 for the first potential,
and b = 2×10−6 m and a = 0.8×1013 A/m3 for the second
potential), the characteristic length is l0 ≈ 7.5× 10−6 m.

4 Numerical treatment

The domain can be seen in analogy to a stretched spring
which is unable to relax into the state corresponding to a
straight line y = 0. It is due to the action of the attractive
forces from the bistable potential H1(y) above and below
the y = 0 axis.

Applying additionally temporal noise and temporally
periodic forces will drive the “spring” to a flip-flop be-
haviour between the two stable symmetric configurations.
The dynamics of these flippings is dependent on the noise
strength and the stiffness of the domain, which will be
the main goal of the investigations, later on. The ampli-
tude A0 of the periodic force is assumed to be sufficiently
small that jumps without noise would not occur. Even so
we will require that A0/D will be a small value. Hence,
jumps through the energetically unfavourable state y = 0
are initiated by the noise but, as will be seen, are synchro-
nized by the periodic signal.

Equation (10) has been simulated by a fast Euler
method taking care of the boundary conditions (14). To
ensure the reliability of the program the convergence to
the stationary (time independent) analytic solution for the
potential H(2)

1 has been tested and was observed. One of
these stationary solutions is marked by the dashed line
in Figure 1 and we found agreement with the analytical
solution. Figure 1 additionally shows different snapshots
of the domain with noise. From the figure one can extract
also that the effect of the temporal global noise results
approximately in a stochastic change of the elongation of
the spring.

Later, in the numeric and theoretical analysis, the
stochastic dynamics is further reduced to a two state pic-
ture with states +1 and −1 depending on the averaged
location of the domain above or below the y = 0 axis.
The response of the system with respect to the noise and
the periodic force, later we will call it output q(t), reads,
respectively

q(t) = sgn

(
n∑
i=1

y(xi)

)
= ± 1 (19)

0.0 5.0 10.0
x

−1.0

−0.5

0.0

0.5

1.0

y(x)

Fig. 1. Example for the flip-flop behaviour of a pinned domain
under influence of a global small signal and noise. Different
snapshots of stochastic domain configurations from simulations
of equation (10) are shown. Approximately, the global forces
affect the elongation of the domain. In the absence of noise, a
domain is located in one of two stationary (time independent)
states. One of them is shown by the dashed lines. A symmetry
of the stationary state with respect to replacement of y into
−y is restored by noise.

where n is the number of simulated boxes which have been
used according to the necessary discretisation of the nu-
merical problem.

The resulting binary time series, e.g.,

q(t) = ...,+1,+1,−1,+1,−1,−1,−1,+1, ..., (20)

can then be processed by Fourier analysis which has been
carried out by a fast Fourier transform (FFT) algorithm.
To minimize the errors arising from the FFT aliasing prob-
lem a signal frequency Ωs matching one of the frequencies
of the resulting discrete Fourier spectrum has been cho-
sen. The FFT used 4096 sampling points of a total running
time of around 2000 time units. A total of 50 spectra with
different initial phases had to be averaged in order to get
a reasonable stationary power spectrum density (PSD).

The resulting PSD consisting of peaks at Ωs and its
multiples riding on a Lorentzian like background is charac-
teristic of many examples of periodically driven stochastic
overdamped nonlinear dynamics. To prove stochastic reso-
nance we have investigated the signal-to-noise ratio (SNR)
of the output which is given by the weight of the first peak
at Ωs divided by the value of the background noise at this
frequency. As shown in Figure 2 the SNR shows a clear
maximum while tuning the noise intensity D.

This maximum behaviour is called stochastic reso-
nance. Increasing the intensity of the input noise leads to
an increased coherence between the output and the signal.
The reason for this behaviour is that tuning the noise in-
tensity leads to a change of the stochastic time scale, the
flipping time of the domains. For optimally selected noise
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Fig. 2. Maximum behaviour of the signal-to-noise ratio over
noise strength D of the simulated motion of the domain in
the first (above) and second bistable potentials. Parameters:
Ωs = 0.301..; A0 = 0.2; l = 11 resp. 17; ρ = 1; λ = 1; a =12
resp. 2; b =12 resp. 1; ∆t = 10−3; n = 15.

this time scale can be brought in accordance with the time
of the periodic driving. If the mean time for a single flip
equals the half period of the inputting signal the weight of
the first peak in the spectrum becomes maximal. It means
that a certain amount of flips occurs exactly on the same
time scale as the driving signal.

Modern developments of the theory of SR even trace
back this phenomenon to a phase synchronization of the
output and input [32]. For low noise rare flips occur ran-
domly with a large spread variance, for large noise tran-
sitions happen nearly independently of all other acting
forces. For optimally selected noise the periodic force is
substantial for the dynamics since already small changes
of the effective energetic barrier between the two stable
configurations influence mainly the temporal behaviour of
flipping in accordance with the force or oppositely to it.

On the one side, if the domain is located above y = 0
and the periodic force points downwards, the action of this
force (despite its smallness) changes the stochastic time
scale so far that the stochastic transition to the location
below y = 0 becomes nearly a sure event within the time
the force acts downwards (half period of the signal). The
second ingredient is that the probability of re-hopping up-
wards during that half-period is vanishingly small. Thus
the output follows the input during a half period with high
probability. Since the situation is symmetric with respect
to the change of the force the domain will follow the signal
by subsequent changes for sufficiently low frequencies of
the driving [33].

Additionally Figure 2 shows that the maximum is
shifted to larger values ofD if the stiffness parameterH0 of
the domain is decreased. A way to understand this is given
in the next section where a qualitative theoretic approach
is presented using a picture of an effective potential.

5 Theoretical approach

As the starting point for a qualitative analysis, equa-
tion (10) for the overdamped dynamic is used again. Al-
though the approximation

(
1 + (∂y∂x )2

)−1 ≈ 1− (∂y∂x )2 for
small ∂y∂x can be made it is still hard to solve the equation
directly. According to Kantarovich [36], the approximate
solution of the variational problem should be sought in
the form of a finite combination of trial functions with
unknown coefficients depending on time. Such an approx-
imation is more adequate for our case than other methods,
for example, by means of Ritz’s method. As first approx-
imation, the ansatz

y(x) = A(t)
{
B sn

(
x

x0
, k

)}
, (21)

y(x) = A(t)

{
b

[
1−

cosh ( 1
l0

( l2 − x))

cosh ( l
2l0

)

]}
(22)

have been used for the first and second type of bistable
potential, respectively.

The motivation to seek solutions in the above given
shape is provided by the stationary solution correspond-
ing in both potentials with the factors in (21) and (22)
in the brackets. A(t) will represent an elongation of these
solutions and equals ±1 for the stationary case. Also the
results of the numerical experiment suggest the usage of
this ansatz. Since the second type of bistable potential
H

(2)
1 possesses a discontinuity in its derivative, only qual-

itative statements can be accepted from this linear ap-
proach. The benefit of using this ansatz is that our two-
dimensional problem is reduced to a one-dimensional one.

Substituting the ansatzes (21) and (22) into the La-
grangian (1) and dissipative function Q (9) and integrat-
ing them with respect to x, we get the functionals L[A(t)]
and Q[A(t)]. Considering only small deviations of the do-
main from the y = 0 axis, i.e. small elongations from A(t)
terms, with orders higher than A4 and A2, respectively,
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for the first and second potential neglected. After carrying
out the integration over x this ends up with polynomials
in A(t). We get for the first and second potential

L(1)[A(t)] = −
(
−S1

2
A2 +

S2

4
A4

)
+ S3A [A0 cos (Ωst+ φ) +

√
2Dξ(t)], (23)

Q(1)[A(t)] = (1/2)Λ(1)

(
∂A

∂t

)2

, (24)

L(2)[A(t)] = −
(
−C1 | A | +

C2

2
A2

)
+ C3A [A0 cos (Ωst+ φ) +

√
2Dξ(t)], (25)

Q(2)[A(t)] = (1/2)Λ(2)

(
∂A

∂t

)2

· (26)

The coefficients S1, S2, S3, C1, C2, C3, Λ
(1) and Λ(2) can be

found in the Appendix.
Considering again the overdamped limit (10) of (8) we

arrive at the reduced equations for the dynamics of the
elongations

Ȧ(t) = S̃1A(t)− S̃2A
3(t)

+S̃3A0 cos (Ωst+ φ) + S̃3

√
2Dξ(t) (27)

and

Ȧ(t) = C̃1sign(A(t))− C̃2A(t)

+C̃3A0 cos (Ωst+ φ) + C̃3

√
2Dξ(t) (28)

with S̃i = Si/Λ
(1) and C̃i = Ci/Λ

(2).
For S1, S2, C1, C2 > 0 the equations (27) and (28) de-

scribe nothing else but the stochastic motion of a Brow-
nian particle in a modulated double well potential with
rescaled signal amplitudes A(1)

0r = S̃3A0 and A
(2)
0r = C̃3A0

and with noise intensities D(1)
r = S̃2

3D and D(2)
r = C̃2

3D. It
is one of the best studied systems in the theory of SR and
we are able to use former results by rescaling parameters
accordingly to our problem. In particular, we will make use
of the theory of McNamara and Wiesenfeld [34] where the
dynamics is further reduced to a periodically driven two
state random walk in the limit of small amplitudes which
is in agreement with the numerical treatment of Section 4.
This theory was proven later to give sufficiently good re-
sults for small amplitudes [3], especially for a qualitative
analysis as in our case.

Two states of elongations A(t) = ± 1 will be con-
sidered and rates of transitions for the modified signal
amplitudes and noise intensities can be given using stan-
dard procedures [35]. Using this Kramers rates for the
stochastic processes (27) and (28) the two-state theory
of [34] is directly applied. It leads to the calculation of the
power spectrum of the two-state output assuming that
the power arising from the signal is much smaller than
the power of the whole spectrum. Further, to make the
analysis independent of the initial state and, hence, trans-
forming the problem into a stationary process, resulting

expressions were averaged over a random initial phase of
the periodic input (assuming it equally distributed). The
resulting power spectrum of this two-state theory consists
of two parts, one weighted Fermi-delta function above the
signal frequency Ωs and a continuous Lorentzian-like noise
background [3,34].

Therefore the SNR, the ratio of the weight of the delta-
function and the noise background at Ωs, within the de-
scribed limitations can be determined and we give the
expressions for the considered two cases. They read

SNR(1) ≈ 1√
8

S̃2
1A

2
0

S̃2S̃2
3D

2
e
− S̃2

1
4S̃2S̃

2
3D (29)

and

SNR(2) ≈ 1
4

C̃2
1A

2
0

C̃2C̃2
3D

2
e
− C̃2

1
2C̃2C̃

2
3D , (30)

respectively.
The SNRs (29) and (30) are plotted with respect to

the noise intensity in Figure 3 and exhibit the well known
bell-shaped curves. Qualitatively they agree with the SNR
of the numerical treatment and have maxima with values

SNR(1)
max = 8

√
8
S̃2S̃

2
3

e2S̃2
1

A2
0 (31)

and

SNR(2)
max = 4

C̃2C̃
2
3

e2C̃2
1

A2
0 (32)

located at

D(1)
max =

1
8

S̃2
1

S̃2S̃2
3

(33)

and

D(2)
max =

1
4

C̃2
1

C̃2C̃2
3

(34)

respectively. From the mathematical point of view these
maximums are a consequence of the competition of two
competing tendencies. On the one side, the noise enters
like exp(−.../D) giving immediately rise to a steep in-
crease with increasing but still small D. For large D this
factor is no longer dominating but near 1. In addition,
the SNRs have a D dependent prefactor, which depends
on a power in D, and thus is unimportant for small D
but dominates for D to infinity. It is also clear that in this
limit SNR should decrease. Hence, one gets a “maximum”,
where the strongly increasing small D branch meets the
softly decreasing large D branch [3,14].

The calculated SNRs show qualitative agreement with
the numerics also in their behaviour for increasing H0,
which stands for the domain stiffness. Both maximums
grow and are shifted to lower values of D with increas-
ing stiffness. The coefficients S̃1, S̃2 and C̃1, C̃2 contain
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Fig. 3. Maximum behaviour of the analytic signal-to-noise
ratio over noise strength D of the motion of the domain in the
first (above) and second bistable potentials. Parameters: see
Figure 2.

the stiffness parameter x0/l or l0/l, respectively. There-
fore, the effective potentials for the first and second cases,

U
(1)
eff = −S1

2
A2 +

S2

4
A4 (35)

and

U
(2)
eff = −C1|A|+

C2

2
A2, (36)

will change by varying these parameters. An increased
parameter x0/l (or l0/l) smoothes the effective poten-
tials (35) and (36), the domain is stretched towards the
y = 0 axis and less noise is needed to bring the domain to
the other side of the potential barrier. That explains the
growth of the SNR maximum and its shift to lower values

of D for an increased stiffness. Therefore our system rep-
resents a new example of array enhanced SR as discussed
in [11–14] but, oppositely, with the shift of the optimal
noise to smaller values of D.

We also have to notice the limited agreement of both
theory and numerics in the large noise limit. Not only
the limited validity of the approximative model but also
limits of the numeric algorithm may be responsible for the
discrepancy between the theoretical and numerical results
(the crossing of the theoretical curves and the noncrossing
of the curves of the simulated SNR) for the second type
of bistable potential in that region.

6 Conclusions

A noisy magnetic field can enhance the periodic compo-
nent in the motion of a ferromagnetic domain which is
pinned at two inhomogeneities and exposed to a weak pe-
riodic signal field. The signal to noise ratio of the out-
put vs. input noise intensity shows a maximum which is
called stochastic resonance. The position of the maximum
is shifted towards smaller noise values if the stiffness of the
domain is increased. This is due to the fact that the bar-
riers of the effective potentials (35) and (36) get smaller.
The presented effect might be used for a measuring tool
for the system’s parameters.

Appendix A

A.1 Stiff and flexible domains

The stationary (time independent) solutions (15) and (16)
can be substantially simplified in the limiting cases of flex-
ible or stiff domains.
a) In the case of the first potential, we have

y(x) = ±

B tanh
(
x
x̃0

)
for 0 < x < l/2

B tanh
(
l−x
x̃0

)
for l/2 < x < l,

(37)

with

B =
√
a

b

[
1− 4 exp

(
− l

x̃0

)]
(38)

and the other parameters are given by

k = 1− 8 exp
(
− l

x̃0

)
,

d = 8a exp
(
− l

x̃0

)
,

x0 = x̃0

[
1− 4 exp

(
− l

x̃0

)]
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for a flexible domain (l � x̃0 ≡
√

2H0
a ) and N = 1. For a

stiff domain (l ∼= xc1 ≡ π
√

H0
a ) one gets

y(x) = ±B sin
(
x

x0

)
, (39)

with B =
√

2a
b k(1− k2

2 )

k =

√
4
3

(
l

xc1
− 1
)[

1− 1
8

(
l

xc1
− 1
)]

,

d = a(1− 2k2 + 2k4),

x0 =
l

π

(
1− k2

4
− 5

64
k4

)
.

In this case, a domain can become curved for l ≥ xc1, only.
b) In the case of the second potential, the stationary (time
independent) solution can be approximated by

y(x) = ±b


x
l0

[
1− x

2l0
− 2 exp

(
− l
l0

)]
, (a),

1− exp
(
− x
l0

)
− exp

(
− l−xl0

)
, (b)

l−x
l0

[
1− l−x

2l0
− 2 exp

(
− l
l0

)]
(c)

(40)

for a flexible domain (l � l0) and where the three cases
are for (a): x < l0, (b): x > l0 and l − x > l0 and (c):
l− x < l0, respectively. For a stiff domain (l � l0) we get

y(x) = ±bx(l − x)/l20. (41)

A.2 Coefficients for Section 5

1. For the first potential we have obtained

S1 =
2aB2l

3k2

[
2 + k2

1 + k2
− 4x0

l
E(k)

]
,

S2 =
bB4l

3k4

[
2 + k2 − 4x0

l
(1 + k2)E(k)

]
,

S3 =
x0B

k
ln

1 + k

1− k ,

Λ(1) = 2ρλ
B2l

k2

(
1− 2x0

l
E(k)

)
with E(k) being the complete elliptic function.
2. For the second potential we have obtained

C1 = C2 = ab2l

(
1− 2l0

l
tanh

(
l

2l0

))
,

C3 =
C1

ab
,

Λ(2) = 2ρλb2l
(

1 +
1
2

sech2

(
l

2l0

)
− 3l0

l
tanh

(
l

2l0

))
.

A.3 SNRs in the limit of stiff and flexible domains

With the estimations given in the Appendix correspond-
ing limiting values of the SNR can be estimated. It
follows from (31) and (33) that in the large stiffness
limit (l → xs or l � l0), the maximal values of the
SNRs and their corresponding noise intensities behave as
S

(1)
max ∝ k−4 ∝ (l/xs − 1)−2, D

(1)
max ∝ k4 ∝ (l/xs − 1)2

and S
(2)
max ∝ (l0/l)2, D

(1)
max ∝ (l/l0)2. On the other hand

for flexible domains l/x0 → ∞ or l/l0 → ∞ the S
(1,2)
max

and D
(1,2)
max approach constants, in particular we have

found S
(1)
max = 8

√
2A2b/(e2ρλa2), D(1)

max = ρλa2/(4b) and
S

(2)
max = 4A2/(e2ρλab2), D(2)

max = ρλab2/2.
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